Fiche technique

Une ventouse permet la préhension (par le vide) et la manipulation d'objets divers différents par leur forme, leur aspect et leur masse. L'utilisation de venturi permet de générer du vide en diminuant la pression atmosphérique de l'ordre de 30 à 98%, s'approchant du vide absolu.

Pour obtenir la force théorique (N) d'une ventouse, on multiplie la surface de la ventouse (cm²) par la dépression (%) :

Force ventouse (N) = surface ventouse (cm2) x niveau de vide (%) x 0,099366

Pour garantir une sécurité d'utilisation optimale et pour tenir compte des mouvements et accélérations, nous divisons cette force par des coefficients de sécurité : soit 3 pour préhension horizontale ou 5 pour préhension verticale associant le glissement.

Vous trouverez dans le tableau ci-dessous les forces indicatives des ventouses (N) à différents taux de vide (%).

Exemple: pour une ventouse Ø50mm et vide 90%,

la force théorique = 175,5N = 17,5kg = 5,83kg (coefficient de 3 inclus).

Diamètre Force théorique (N) de la ventouse à niveau ventouse Surface								veau de	vide (%)
(mm)	cm ²	10%	20%	30%	40%	50%	60%	70%	80%	90%
5	0,196	0,195	0,390	0,585	0,780	0,975	1,170	1,365	1,560	1,755
6	0,282	0,280	0,561	0,842	1,123	1,404	1,685	1,966	2,247	2,528
8	0,502	0,499	0,998	1,498	1,997	2,497	2,996	3,496	3,995	4,495
10	0,785	0,780	1,560	2,341	3,121	3,902	4,682	5,462	6,243	7,023
15	1,767	1,755	3,511	5,267	7,023	8,779	10,53	12,29	14,04	15,80
20	3,141	3,121	6,243	9,365	12,48	15,60	18,73	21,85	24,97	28,09
25	4,908	4,877	9,755	14,63	19,51	24,38	29,26	34,14	39,02	43,89
30	7,068	7,023	14,04	21,07	28,09	35,11	42,14	49,16	56,19	63,21
35	9,621	9,560	19,12	28,68	38,24	47,80	57,36	66,92	76,84	86,04
40	12,56	12,48	24,97	37,46	49,94	62,43	74,92	87,40	99,89	112,3
50	19,63	19,51	39,02	58,53	78,04	97,55	117,0	136,5	156,0	175,5
60	28.27	28.09	56.19	84.28	112.3	140.4	168.5	196.6	224.7	252.8

Matières	Température d'utilisation C°	Dureté shore	Couleur	Particularités
NBR = Nitrile	-30 à +110	55 ±5	noir	la plus standard
SI = Silicone	-30 à +220	55 ±5	translucide	résiste en basse et haute température compatible alimentaire
NR = Caoutchouc naturel	-25 à +90	50 ±5	gris	résiste au frottement et très bonne souplesse

	Résistances : insuffisant 1 🛫						excellent 6					
Matières	déchirement	fissuremen	élasticité	usure	frottement	vieillisemer	ozone	essence	huiles graisses	acides	alcalis	eau chaude
NBR = Nitrile	4	5	4	4	4	4	4	5	6	2	4	4
SI = Silicone	5	4	5	4	5	4	6	4	6	3	3	3
NR = Caoutchouc naturel	4	3	4	2	2	2	3	3	3	1	2	2