

Spur and helical gears

			Equation for	Equation for
Description	Symbo	I Unit	spur gears	helical gears
Normal module	mn			
Transverse module	m _t		= m _n	$= m_n / \cos \beta$
Axial module	mx		-	= m _n / sin β
Normal Pressure Angle	α_n	degrees	20°	20°
Transverse Pressure Angle	α_t	degrees	= 0. _n	= tan ⁻¹ (tan $\alpha_n / \cos \beta$)
Helix angle	β	degrees	0°	15° ou 45°
Lead angle	λ	degrees	-	90-β
Number of teeth	Ζ			
Profile shift coefficient	Х		0 as standard	0 as standard
Addendum	ha	mm	1.m _n	1.m _n
Dedendum	hf	mm	1.25m _n	1.25m _n
Tooth depth	h	mm	2.25m _n	2.25m _n
Gear ratio	R		$= Z_2 / Z_1$	$= Z_2 / Z_1$
Centre distance	а	mm	$= (d_1 + d_2) / 2$	$= (d_1 + d_2) / 2$
Pitch circle diameter	d	mm	$= Z.m_n$	$= Z.m_n = (Z.m_n) / \cos \beta$
Tip diameter	da	mm	$= d + (2m_n \cdot x) + (2m_n)$	$= d + (2m_n \cdot x) + (2m_n)$
Root diameter	dr	mm	$= d_a - (2.h)$	$= d_a - (2.h)$
Normal pitch	p_n	mm	$= \pi . m_n$	$= \pi . m_n$
Transverse pitch	pt		-	$= \pi . m_t = (\pi . m_n) / \cos \beta$
Axial pitch	$p_{\rm x}$		-	$= \pi . m_x = (\pi . m_n) / \sin \beta$
Normal tooth thickness in pitch circle	s _n	mm	$= (p_n/2) + 2m_n x.tan \alpha_t$	$= (p_n/2) + 2m_n x.tan \alpha_n$
Transversal tooth thickness in pitch circle	St	mm	-	$= (p_t/2) + 2m_n x.tan \alpha_t$

When working with a pair of gears the subscripts 1 & 2 denote the input (drive) and the output (driven) gear. Tip diameter is the theoretical diameter of the gear without tooth thickness tolerance applied.

For s_n & s_t when à x=0, this is the theoretical tooth thickness. Actual tooth thickness will be less.

The subscript e is for upper allowance values and i for lower allowance values.

A 15° right handed helical gear must be used with a 15° left handed helical gear.

A 45° right handed helical gear must be used with a 45° left handed helical gear.

Precision parallel helical gears have a helix angle of 15° and are not compatible with the standard range SH which has a helix angle of 17°45'.

484 4 Volume 4 2013